Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Poult Sci ; 103(4): 103486, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350385

RESUMO

Eimeria maxima microneme protein 3 (EmMIC3) is pivotal in the initial recognition and attachment of E. maxima sporozoites to host cells. EmMIC3 comprises 5 tandem Type I microneme adhesive repeat (MAR) domains, among which MAR2 of EmMIC3 (EmMAR2) has been identified as the primary determinant of EmMIC3-mediated tissue tropism. Nonetheless, the mechanisms through which EmMAR2 guides the parasite to its invasion site through interactions with host receptors remained largely uncharted. In this study, we employed yeast two-hybrid (YTH) screening assays and shotgun LC-MS/MS analysis to identify EmMAR2 receptors in chicken intestine epithelial cells. ATPase H+ transporting V1 subunit G1 (ATP6V1G1), receptor accessory protein 5 (REEP5), transmembrane p24 trafficking protein (TMED2), and delta 4-desaturase sphingolipid 1 (DEGS1) were characterized as the 4 receptors of EmMAR2 by both assays. By blocking the interaction of EmMAR2 with each receptor using specific antibodies, we observed varying levels of inhibition on the invasion of E. maxima sporozoites, and the combined usage of all 4 antibodies resulted in the most pronounced inhibitory effect. Additionally, the spatio-temporal expression profiles of ATP6V1G1, REEP5, TMED2, and DEGS1 were assessed. The tissue-specific expression patterns of EmMAR2 receptors throughout E. maxima infection suggested that ATP6V1G1 and DEGS1 might play a role in early-stage invasion, whereas TMED2 could be involved in middle and late-stage invasion and REEP5 and DEGS1 may participate primarily in late-stage invasion. Consequently, E. maxima may employ a multitude of ligand-receptor interactions to drive invasion during different stages of infection. This study marks the first report of EmMAR2 receptors at the interface between E. maxima and the host, providing insights into the invasion mechanisms of E. maxima and the pathogenesis of coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Animais , Galinhas/metabolismo , Cromatografia Líquida/veterinária , Micronema , Proteínas de Protozoários/genética , Espectrometria de Massas em Tandem/veterinária , Coccidiose/parasitologia , Coccidiose/veterinária , Intestinos/parasitologia , Células Epiteliais/metabolismo , Doenças das Aves Domésticas/prevenção & controle
2.
Vaccines (Basel) ; 12(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276673

RESUMO

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan that can elicit a robust immune response during infection. Macrophage cells have been shown to play an important role in the immune response against T. gondii. In our previous study, the eukaryotic translation initiation factor 5A (eIF-5A) gene of T. gondii was found to influence the invasion and replication of tachyzoites. In this study, the recombinant protein of T. gondii eIF-5A (rTgeIF-5A) was incubated with murine macrophages, and the regulatory effect of TgeIF-5A on macrophages was characterized. Immunofluorescence assay showed that TgeIF-5A was able to bind to macrophages and partially be internalized. The Toll-like receptor 4 (TLR4) level and chemotaxis of macrophages stimulated with TgeIF-5A were reduced. However, the phagocytosis and apoptosis of macrophages were amplified by TgeIF-5A. Meanwhile, the cell viability experiment indicated that TgeIF-5A can promote the viability of macrophages, and in the secretion assays, TgeIF-5A can induce the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) from macrophages. These findings demonstrate that eIF-5A of T. gondii can modulate the immune response of murine macrophages in vitro, which may provide a reference for further research on developing T. gondii vaccines.

3.
Small ; : e2308956, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183403

RESUMO

The present study proposes a novel engineering concept for the customization of functionality and construction of superstructure to fabricate 2D monolayered N-doped carbon superstructure electrocatalysts decorated with Co single atoms or Co2 P nanoparticles derived from 2D bimetallic ZnCo-ZIF superstructure precursors. The hierarchically porous carbon superstructure maximizes the exposure of accessible active sites, enhances electron/mass transport efficiency, and accelerates reaction kinetics simultaneously. Consequently, the Co single atoms embedded N-doped carbon superstructure (Co-NCS) exhibits remarkable catalytic activity toward oxygen reduction reaction, achieving a half-wave potential of 0.886 V versus RHE. Additionally, the Co2 P nanoparticles embedded N-doped carbon superstructure (Co2 P-NCS) demonstrates high activity for both oxygen evolution reaction and hydrogen evolution reaction, delivering low overpotentials of 292 mV at 10 mA cm-2 and 193 mV at 10 mA cm-2 respectively. Impressively, when employed in an assembled rechargeable Zn-air battery, the as-prepared 2D carbon superstructure electrocatalysts exhibit exceptional performance with a peak power density of 219 mW cm-2 and a minimal charge/discharge voltage gap of only 1.16 V at 100 mA cm-2 . Moreover, the cell voltage required to drive an overall water-splitting electrolyzer at a current density of 10 mA cm-2 is merely 1.69 V using these catalysts as electrodes.

4.
Chem Commun (Camb) ; 60(12): 1567-1570, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38224451

RESUMO

A novel dual-outward contraction mechanism is applied to construct 2D hollow carbon superstructures (HCSs) via pyrolysis of hybrid ZIF superstructures. One outward contraction stress is offered by the in situ formed thin carbon shell, while another originates from the interconnected facets of ZIF polyhedra within the ZIF superstructure.

5.
ACS Nano ; 18(5): 4308-4319, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261610

RESUMO

The intrinsic roadblocks for designing promising Pt-based oxygen reduction reaction (ORR) catalysts emanate from the strong scaling relationship and activity-stability-cost trade-offs. Here, a carbon-supported Pt nanoparticle and a Mn single atom (PtNP-MnSA/C) as in situ constructed PtNP-MnSA pairs are demonstrated to be an efficient catalyst to circumvent the above seesaws with only ∼4 wt % Pt loadings. Experimental and theoretical investigations suggest that MnSA functions not only as the "assist" for Pt sites to cooperatively facilitate the dissociation of O2 due to the strong electronic polarization, affording the dissociative pathway with reduced H2O2 production, but also as an electronic structure "modulator" to downshift the d-band center of Pt sites, alleviating the overbinding of oxygen-containing intermediates. More importantly, MnSA also serves as a "stabilizer" to endow PtNP-MnSA/C with excellent structural stability and low Fenton-like reactivity, resisting the fast demetalation of metal sites. As a result, PtNPs-MnSA/C shows promising ORR performance with a half-wave potential of 0.93 V vs reversible hydrogen electrode and a high mass activity of 1.77 A/mgPt at 0.9 V in acid media, which is 19 times higher than that of commercial Pt/C and only declines by 5% after 80,000 potential cycles. Specifically, PtNPs-MnSA/C reaches a power density of 1214 mW/cm2 at 2.87 A/cm2 in an H2-O2 fuel cell.

6.
Small ; 20(11): e2305459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37922532

RESUMO

Electrocatalyst engineering from the atomic to macroscopic level of electrocatalysts is one of the most powerful routes to boost the performance of electrochemical devices. However, multi-scale structure engineering mainly focuses on the range of atomic-to-particle scale such as hierarchical porosity engineering, while catalyst engineering at the macroscopic level, such as the arrangement configuration of nanoparticles, is often overlooked. Here, a 2D carbon polyhedron array with a multi-scale engineered structure via facile chemical etching, ice-templating induced self-assembly, and high-temperature pyrolysis processes is reported. Controlled phytic acid etching of the carbon precursor introduces homogeneous atomic phosphorous and nitrogen doping, as well as a well-defined mesoporous structure. Subsequent ice-templated self-assembly triggers the formation of a 2D particle array superstructure. The atomic-level doping gives rise to high intrinsic activity, while the well-engineered porous structure and particle arrangement addresses the mass transport limitations at the microscopic particle level and macroscopic electrode level. As a result, the as-prepared electrocatalyst delivers outstanding performance toward oxygen reduction reaction in both acidic and alkaline media, which is better than recently reported state-of-the-art metal-free electrocatalysts. Molecular dynamics simulation together with extensive characterizations indicate that the performance enhancement originates from multi-scale structural synergy.

7.
Poult Sci ; 103(2): 103359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128458

RESUMO

IFN-γ plays a crucial role in resisting intracellular parasitic protozoa, such as Eimeria species. In our previous study, we identified 4 molecules derived from Eimeria maxima (E. maxima) that significantly inhibited IFN-γ production. However, the mechanism underlying this inhibitory effect remains unknown. In this study, we first investigated the effects of these 4 IFN-γ inhibitory molecules on the expression levels of chicken Toll-like receptors (chTLRs), IL-12, IL-10, TGF-ß, and TNF-α in chicken macrophage HD11 and bone marrow-derived dendritic cells (BMDCs). The results demonstrated that these 4 inhibitory molecules significantly downregulated the mRNA levels of chTLR-2, chTLR-4, chTLR-21, and both mRNA and protein levels of IL-12. Subsequently, to clarify the effects of these 4 inhibitory molecules on the IL-12 secretion-related signaling pathways in chicken macrophages, qRT-PCR and Western blot were used to detect the changes of key molecules involved in the signaling pathways of IL-12 secretion (NF-κB, ERK1/2, p38, JNK, STAT3) following coincubation with these inhibitory molecules. Finally, RNAi was employed to verify the function of key molecules in the signaling pathway. The results revealed a significant upregulation in the expression of ERK1/2 phosphorylated protein induced by the 4 inhibitory molecules. Knockdown of the ERK1/2 gene significantly reduced the inhibitory effect of the 4 E. maxima inhibitory molecules on IL-12. These findings indicate that the 4 inhibitory molecules can inhibit the secretion of IL-12 by upregulating the expression of ERK1/2 phosphorylated protein, which is a key molecule in the ERK-MAPK pathway. Our study may contribute to elucidating the mechanisms underlying immune evasion during E. maxima infections, thereby providing new insights for the control of chicken coccidiosis.


Assuntos
Galinhas , Eimeria , Animais , Interleucina-12/genética , Interleucina-12/metabolismo , Transdução de Sinais , Macrófagos , RNA Mensageiro/metabolismo
8.
Vet Res ; 54(1): 119, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093398

RESUMO

Clinical avian coccidiosis is typically caused by coinfection with several Eimeria species. Recombinant protein and DNA vaccines have shown promise in controlling coccidiosis. On this basis, DNA vaccines that encode multiple epitopes from different Eimeria species may provide broad protection against coinfections. In this study, we designed a fusion gene fragment, 14EGT, that contained concentrated T-cell epitopes from four common antigens of Eimeria species (14-3-3, elongation factor 2, glyceraldehyde-3-phosphate dehydrogenase, and transhydrogenase). The multiepitope DNA vaccine pVAX1-14EGT and recombinant protein vaccine pET-32a-14EGT (r14EGT) were then created based on the 14EGT fragment. Subsequently, cellular and humoral immune responses were measured in vaccinated chickens. Vaccination-challenge trials were also conducted, where the birds were vaccinated with the 14EGT preparations and later exposed to single or multiple Eimeria species to evaluate the protective efficacy of the vaccines. According to the results, vaccination with 14EGT preparations effectively increased the proportions of CD4+ and CD8+ T cells and the levels of Th1 and Th2 hallmark cytokines. The levels of serum IgG antibodies were also significantly increased. Animal vaccination trials revealed alleviated enteric lesions, weight loss, and oocyst output compared to those of the control groups. The preparations were found to be moderately effective against single Eimeria species, with the anticoccidial index (ACI) ranging from 160 to 180. However, after challenge with multiple Eimeria species, the protection provided by the 14EGT preparations was not satisfactory, with ACI values of 142.18 and 146.41. Collectively, the results suggest that a multiepitope vaccine that encodes the T-cell epitopes of common antigens derived from Eimeria parasites could be a potential and effective strategy to control avian coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Vacinas Protozoárias , Vacinas de DNA , Animais , Eimeria/genética , Galinhas , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Antígenos de Protozoários/genética , Coccidiose/prevenção & controle , Coccidiose/veterinária , Proteínas Recombinantes , Eimeria tenella/genética
9.
Vaccines (Basel) ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140198

RESUMO

Haemonchus contortus is a gastrointestinal parasite that adversely impacts small ruminants, resulting in a notable reduction in animal productivity. In the current investigation, we developed a nanovaccine by encapsulating the recombinant protein rHcES-15, sourced from the excretory/secretory products of H. contortus, within biodegradable poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The development of this nanovaccine involved the formulation of PLGA NPs using a modified double emulsion solvent evaporation technique. Scanning electron microscopy (SEM)verified the successful encapsulation of rHcES-15 within PLGA NPs, exhibiting a size range of 350-400 nm. The encapsulation efficiency (EE) of the antigen in the nanovaccine was determined to be 72%. A total of forty experimental mice were allocated into five groups, with the nanovaccine administered on day 0 and the mice euthanized at the end of the 14-day trial. The stimulation index (SI) from the mice subjected to the nanovaccine indicated heightened lymphocyte proliferation (*** p < 0.001) and a noteworthy increase in anti-inflammatory cytokines (IL-4, IL-10, and IL-17). Additionally, the percentages of T-cells (CD4+, CD8+) and dendritic cell phenotypes (CD83+, CD86+) were significantly elevated (** p < 0.01, *** p < 0.001) in mice inoculated with the nanovaccine compared to control groups and the rHcES-15 group. Correspondingly, higher levels of antigen-specific serum immunoglobulins (IgG1, IgG2a, IgM) were observed in response to the nanovaccine in comparison to both the antigenic (rHcES-15) and control groups (* p < 0.05, ** p < 0.01). In conclusion, the data strongly supports the proposal that the encapsulation of rHcES-15 within PLGA NPs effectively triggers immune cells in vivo, ultimately enhancing the antigen-specific adaptive immune responses against H. contortus. This finding underscores the promising potential of the nanovaccine, justifying further investigations to definitively ascertain its efficacy.

10.
Front Immunol ; 14: 1291379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022512

RESUMO

Understanding the determinants of host and tissue tropisms among parasites of veterinary and medical importance has long posed a substantial challenge. Among the seven species of Eimeria known to parasitize the chicken intestine, a wide variation in tissue tropisms has been observed. Prior research suggested that microneme protein (MIC) composed of microneme adhesive repeat (MAR) domain responsible for initial host cell recognition and attachment likely dictated the tissue tropism of Eimeria parasites. This study aimed to explore the roles of MICs and their associated MARs in conferring site-specific development of E. acervuline, E. maxima, and E. mitis within the host. Immunofluorescence assays revealed that MIC3 of E. acervuline (EaMIC3), MIC3 of E. maxima (EmMIC3), MIC3 of E. mitis (EmiMIC3), MAR3 of EaMIC3 (EaMIC3-MAR3), MAR2 of EmMIC3 (EmMIC3-MAR2), and MAR4 of EmiMIC3 (EmiMIC3-MAR4), exhibited binding capabilities to the specific intestinal tract where these parasites infect. In contrast, the invasion of sporozoites into host intestinal cells could be significantly inhibited by antibodies targeting EaMIC3, EmMIC3, EmiMIC3, EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4. Substitution experiments involving MAR domains highlighted the crucial roles of EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 in governing interactions with host ligands. Furthermore, animal experiments substantiated the significant contribution of EmiMIC3, EmiMIC3-MAR4, and their polyclonal antibodies in conferring protective immunity to Eimeria-affiliated birds. In summary, EaMIC3, EmMIC3, and EmiMIC3 are the underlying factors behind the diverse tissue tropisms exhibited by E. acervuline, E. maxima, and E. mitis, and EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 are the major determinants of MIC-mediated tissue tropism of each parasite. The results illuminated the molecular basis of the modes of action of Eimeria MICs, thereby facilitating an understanding and rationalization of the marked differences in tissue tropisms among E. acervuline, E. maxima, and E. mitis.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Micronema , Proteínas , Galinhas/parasitologia
11.
Poult Sci ; 102(12): 103098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797491

RESUMO

It has been reported that infection of chicken coccidian could inhibit the production of Th1 cytokine IFN-γ, thereby evading clearance by the host immune system. The present study aimed to have a further investigation into the effects of Eimeria maxima IFN-γ inhibitory molecules (EmHPSP-2 and EmHPSP-3) on the immune function of chicken peripheral blood mononuclear cells (PBMC) and various T cell subsets. First, separated PBMC or sorted T cell subsets were used for incubation with recombinant proteins of EmHPSP-2 (rEmHPSP-2) and EmHPSP-3 (rEmHPSP-3). Subsequently, the effects of rEmHPSP-2 and rEmHPSP-3 on proliferative capacity, nitric oxide (NO) release and mRNA levels of cytokines of the above cells were detected. The sorting purity of CD8+, CD4+ CD25-, CD4+, and CD4+ CD25+ T cells was 93.01, 88.88, 87.04, and 81.26%, respectively. The NO release of PBMC was significantly inhibited by rEmHPSP-2 and rEmHPSP-3. The proliferation of PBMC and CD4+ T cells was significantly inhibited by rEmHPSP-2 and rEmHPSP-3, whereas CD8+, CD4+ CD25-, and CD4+ CD25+ T cells was significantly promoted by the 2 proteins. The 2 proteins significantly downregulated interferon-gamma (IFN-γ) mRNA level, upregulated the transcriptional levels of interleukin-10 (IL-10) and transforming growth factor-beta1 (TGF-ß1) in PBMC. IFN-γ and IL-2 transcriptional levels were markedly inhibited in CD8+ T cells. IFN-γ transcriptional level was significantly inhibited, but IL-4 was promoted by rEmHPSP-2 and rEmHPSP-3 in CD4+ CD25- T cells. Meanwhile, the inhibitory effects of rEmHPSP-2 and rEmHPSP-3 on the transcriptional levels of IFN-γ and IL-2 were more obvious in CD4+ T cells containing CD25+ cells compared with the CD25+ cells depletion group. It was found that IL-10, TGF-ß1, and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) mRNA levels were significantly upregulated upon stimulation of chicken CD4+ CD25+ T cells by proteins. This study is not only of great significance to clarify the immune evasion mechanism of chicken coccidia, but also provides candidate antigen molecules for development of a novel vaccine against chicken coccidiosis.


Assuntos
Eimeria , Interleucina-10 , Animais , Interferon gama/genética , Interferon gama/metabolismo , Galinhas/metabolismo , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Interleucina-2 , Fator de Crescimento Transformador beta1 , Subpopulações de Linfócitos T/metabolismo , Citocinas , Proteínas Recombinantes , RNA Mensageiro , Imunidade
12.
Vet Res ; 54(1): 80, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740213

RESUMO

Th9 cells play a crucial role in parasite immunity. The development of Th9 cells is facilitated by several cytokines. Key transcription factors, such as STAT6, STAT5, and PU.1, are known to enhance IL-9 expression during the Th9 immune response. NF-κB-mediated transduction pathways participate in the induction of IL-9. In a previous study, we unveiled a unique ribosomal protein derived from Haemonchus contortus excretory-secretory proteins (HcESPs) that interact with host Th9 cells. In the present study, the effects of the Haemonchus contortus ribosomal protein L6 domain DE-containing protein (HcL6) on IL-9 secretion, Th9 differentiation, and IL-9 transcription were assessed by employing ELISA, flow cytometry, and qPCR methodologies. The observations revealed the transcriptional upregulation of several key genes within the Th9 immune response pathway. Moreover, silencing STAT6, PU.1, and NF-κB was found to attenuate the Th9 immune response. In this study, we unveiled the Th9 immune response-inducing capabilities of HcL6 and elucidated some of its underlying mechanisms. These findings suggest that HcL6 is an immunostimulatory antigen capable of inducing the Th9 immune response. These insights could prove instrumental in identifying potential candidate antigens for the development of immunoprophylactic strategies against H. contortus infections.


Assuntos
Haemonchus , NF-kappa B , Animais , Cabras , Interleucina-9/genética , Imunidade
13.
Vaccines (Basel) ; 11(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766114

RESUMO

Trichinella spiralis (T. spiralis), a nematode parasite, is the major cause of Trichinellosis, a zoonotic disease. A key role of MAPR in the reproductive system is to maintain pregnancy. Previous studies found that antihormone drug design and vaccine therapy of recombinant protein (rTs-MAPRC2) control T. spiralis infection. The current study investigates the inhibitory effects of different ratios of antibodies against Ts-MAPRC2 on the development of muscle larvae (ML) and newborn larvae (NBL). First, we performed indirect immunofluorescence assays and examined the effects of rTs-MAPRC2-Ab on ML and NBL in vitro as well as in vivo. Afterward, siRNA-Ts-MAPRC2 was transfected into T. spiralis muscle larvae. Following that, Ts-MAPRC2 protein was detected by Western Blotting, and mRNA levels were determined by qPCR. We also assessed whether siRNA-treated NBLs were infective by analyzing muscle larvae burden (MLs). Our results showed that rTs-MAPRC2-Ab greatly inhibited the activity of the Ts-MAPRC2 in ML and NBL of T. spiralis and rTs-MAPRC2-Ab reduced larval infectivity and survival in the host in a dose-dependent manner (1:50, 1:200, 1:800 dilutions). Furthermore, siRNA-Ts-MAPRC2 effectively silenced the Ts-MAPRC2 gene in muscle larvae (ML) in vitro, as well as in newborn larvae (NBL) of T. spiralis in vivo. In addition, siRNA-Ts-MAPRC2 (siRNA180, siRNA419, siRNA559) reduced host larval survival and infectivity significantly. This study, therefore, suggests that Ts-MAPRC2 might be a novel molecular target useful in the development of vaccines against T. spiralis infection.

14.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38250831

RESUMO

Avian coccidiosis arises from co-infection involving multiple Eimeria species, which could give rise to substantial economic losses in the global poultry industry. As a result, multivalent anticoccidial vaccines containing common Eimeria antigens offer considerable promise for controlling co-infection in clinical practice. In our previous study, Elongation factor 2 (EF2) was deemed as an immunogenic common antigen across various Eimeria species. This current investigation aimed to further assess the immunogenicity and protective efficacy of EF2 in recombinant subunit vaccine format against three Eimeria species. The EF2 gene cloned from Eimeria maxima (E. maxima) cDNA was designated as EF2 of E. maxima (EmEF2). The immunogenicity of the recombinant protein EmEF2 (rEmEF2) was assessed through Western blot analysis. The evaluation of the vaccine-induced immune response encompassed the determination of T lymphocyte subset proportions, cytokine mRNA transcription levels, and specific IgY concentrations in rEmEF2-vaccinated chickens using flow cytometry, quantitative real-time PCR (qPCR), and indirect enzyme-linked immunosorbent assay (ELISA). Subsequently, the protective efficacy of rEmEF2 was evaluated through vaccination and challenge experiments. The findings demonstrated that rEmEF2 was effectively recognized by the His-tag monoclonal antibody and E. maxima chicken antiserum. Vaccination with rEmEF2 increased the proportions of CD4+ and CD8+ T lymphocytes, elevated IL-4 and IFN-γ mRNA transcription levels, and enhanced IgY antibody levels compared to the control groups. Moreover, compared to the control groups, vaccination with rEmEF2 led to decreased weight loss, reduced oocyst outputs, and alleviated enteric lesions. Furthermore, in the rEmEF2-immunized groups, challenges with E. maxima and E. acervulina resulted in anticoccidial index (ACI) scores of 166.35 and 185.08, showing moderate-to-excellent protective efficacy. Nevertheless, challenges with E. tenella and mixed Eimeria resulted in ACI scores of 144.01 and 127.94, showing low protective efficacy. In conclusion, EmEF2, a common antigen across Eimeria species, demonstrated the capacity to induce a significant cellular and humoral immune response, as well as partial protection against E. maxima, E. acervulina, and E. tenella. These results highlight EmEF2 as a promising candidate antigen for the development of multivalent vaccines targeting mixed infections by Eimeria species.

15.
Vet Sci ; 9(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36548818

RESUMO

Avian Eimeria species vary in their replication location, fecundity, and pathogenicity. They are required to complete the development within the limited space of host intestines, and some synergistic or antagonistic effects occur among different Eimeria species. This study evaluated the impact of Eimeria mitis on the outcome of Eimeria necatrix or Eimeria tenella challenge infection. The severity of E. mitis/E. necatrix and E. mitis/E. tenella mixed infections were quantified by growth performance evaluation, survival rate analysis, lesion scoring, blood stool scoring, and oocyst output counting. The presence of E. mitis exacerbated the outcome of co-infection with E. tenella, causing high mortality, intestinal lesion score, and oocyst production. However, E. mitis/E. tenella co-infection had little impact on the body weight gain compared to individual E. tenella infection. In addition, the presence of E. mitis appeared not to enhance the pathogenicity of E. necatrix, although it tends to inhibit the growth of challenged birds and facilitate oocyst output and mortality in an E. mitis/E. necatrix co-infection model. Collectively, the results suggested a synergistic relationship between E. mitis and E. tenella/E. necatrix when sharing the same host. The presence of E. mitis contributed to disease pathology induced by E. tenella and might also advance the impact of E. necatrix in co-infections. These observations indicate the importance of accounting for differences in the relationships among different Eimeria species when using mixed infection models.

16.
Front Immunol ; 13: 1013159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238295

RESUMO

Haemonchus contortus is an important parasitic nematode of ruminants. Previous studies showed that H. contortus escape the immunity through complex mechanisms, including releasing excretory/secretory proteins (ESPs) to modulate the host immune response. However, the detailed mechanism through which H. contortus excretory/secretory proteins (HcESPs) promote immune evasion remains unknown. In the present study, we demonstrated that HcESPs inhibit the adaptive immune response of goats including downregulation of immune cell antigen presentation, upregulation of immune checkpoint molecules, activation of the STAT3/PD-L1 pathway, and activation of immunosuppressive regulatory T (Treg) cells. Furthermore, HcESPs reversed the LPS-induced upregulation of pro-inflammatory mediators in PBMCs by inhibiting the TLR4/NF-κB/MAPKs/NLRP3 signaling pathway. Our study provides a better understanding of the evasion mechanisms for H. contortus, which could be helpful in providing an alternative way to prevent the infection of this parasite.


Assuntos
Haemonchus , Animais , Antígeno B7-H1/metabolismo , Cabras , Proteínas de Helminto , Proteínas de Checkpoint Imunológico , Evasão da Resposta Imune , Imunidade , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
17.
Pathogens ; 11(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36297205

RESUMO

MicroRNAs (miRNAs), which are small, noncoding RNA molecules, play an important regulatory role in gene expression at the posttranscriptional level. Relatively limited knowledge exists on miRNAs in Rhipicephalus microplus ticks in China; however, understanding the physiology of miRNA functions and expression at different developmental stages is important. In this study, three small RNA libraries were constructed for R. microplus eggs, larvae, and female adults; miRNAs were detected during these developmental stages by high-throughput sequencing, with 18,162,337, 8,090,736, and 11,807,326 clean reads, respectively. A total of 5132 known miRNAs and 31 novel miRNAs were identified. A total of 1736 differentially expressed miRNAs were significantly different at a p-value of <0.01; in female adults, 467 microRNAs were upregulated and 376 miRNAs downregulated compared to larval tick controls. Using larvae as controls, 218 upregulated and 203 downregulated miRNAs were detected in eggs; in eggs, 108 miRNAs were upregulated and 364 downregulated compared to female adults controls. To verify the reliability of the sequencing data, RT−qPCR was applied to compare expression levels of novel miRNAs. Some differentially expressed miRNAs are involved in developmental physiology, signal transduction, and cell-extracellular communications based on GO annotation and KEGG pathway analyses. Here, we provide a dynamic analysis of miRNAs in R. microplus and their potential targets, which has significance for understanding the biology of ticks and lays the foundation for improved understanding of miRNA functioning in the regulation of R. microplus development. These results can assist future miRNA studies in other tick species that have great significance for human and animal health.

18.
J Am Chem Soc ; 144(38): 17457-17467, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36102877

RESUMO

Here, we report the synthesis of two-dimensional (2D) layered metal-organic framework (MOF) nanoparticle (NP) superstructures via an ice-templating strategy. MOF NP monolayers and bilayers can be obtained by regulating the concentration of colloidal MOF NPs without any external fields during self-assembly. Adjacent polyhedral MOF NPs are packed and aligned through crystalline facets, resulting in the formation of a quasi-ordered array superstructure. The morphology of the MOF layers is well preserved when subjected to pyrolysis, and the obtained carbon NPs have hollow interiors driven by the outward contraction of MOF precursors during pyrolysis. With the advantages of large surface areas, hierarchical porosity, high exposure of active sites, and fast electron transport of the 2D layered structure, the mono- and bilayered carbon NP superstructures show better oxygen reduction activity than isolated carbon particles in alkaline media. Our work demonstrates that ice-templating is a powerful strategy to fabricate superstructures of various MOFs and their derivatives.

19.
Parasit Vectors ; 15(1): 282, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933400

RESUMO

BACKGROUND: Histidine acid phosphatase (HAP), a member of the histidine phosphatase superfamily, is widely found in parasites and is also a potential vaccine antigen or drug target. However, the biological function of HAP in Haemonchus contortus is still unclear. METHODS: We cloned the HAP gene from H. contortus (Hc-HAP) and expressed the purified recombinant Hc-HAP (rHc-HAP) protein. The transcription of the Hc-HAP gene in the eggs, infective third-stage larvae (L3s), exsheathed third-stage larvae (xL3s) and adults (females/males) was analyzed by quantitative real-time-PCR (qPCR). An immunofluorescence assay was also used to detect the localization of Hc-HAP expression in adult worms. The effect of rHc-HAP on the function of peripheral blood mononuclear cells (PBMCs) was observed by co-culture of rHc-HAP protein with goat PBMCs. RESULTS: The qPCR results revealed that the Hc-HAP gene was transcribed at a higher level in the L3 and xL3 stages that there were gender differences in transcription at the adult stage, with females exhibiting higher transcription than males. Moreover, Hc-HAP was mainly expressed in adult intestinal microvilli. Additionally, western blot results revealed that rHc-HAP could be detected in goat sera artificially infected with H. contortus. In the experiments, rHc-HAP bound to goat PBMCs and released nitric oxide. The rHc-HAP also induced the expression of interferon gamma (IFN-γ) and the phosphorylated STAT 1 transcription factor, while inhibiting interleukin-4 expression. CONCLUSIONS: The results shows that rHc-HAP stimulated the IFN-γ/STAT1 signaling pathway and enabled polarization of PBMCs toward T-helper 1 immune responses.


Assuntos
Hemoncose , Haemonchus , Fosfatase Ácida , Animais , Feminino , Cabras/parasitologia , Proteínas de Helminto , Histidina/farmacologia , Imunidade , Leucócitos Mononucleares , Masculino
20.
Res Vet Sci ; 152: 61-71, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35932590

RESUMO

Given the central role of dendritic cells (DCs) in directing cell-mediated immunity, this study investigated the capability of Eimeria tenella 14-kDa phosphohistidine phosphatase (EtPHP14) to mature chicken DCs and initiate DC-induced T cell immunity. With the aim of identifying novel protective Eimeria antigen, EtPHP14 gene was successfully cloned and EtPHP14 recombinant protein (rEtPHP14) was expressed in Escherichia coli expression system. rEtPHP14 binding was identified on the surface of chicken DCs by Immunofluorescence assay. DC phenotypes were evaluated by flow cytometry and results indicated that MHCII, CD80, CD86, CD1.1 and CD11c were up-modulated in DCs following rEtPHP14 treatment. RT-qPCR showed increased transcript levels of DC maturation markers CCL5, CCR7 and CD83 in rEtPHP14-treated DCs. Moreover, transcript profile of genes associated with intracellular signaling pathways that characterize the immunogenic (TLR signaling) or tolerogenic (Wnt signaling) state of DCs revealed that TLR signaling was stimulated and Wnt signaling was inhibited in rEtPHP14-treated DCs. Furthermore, proliferation of T cells and differentiation of CD4+ cells were promoted when rEtPHP14-treated DCs were co-cultured with autologous T cells. DCs incubated with rEtPHP14 alone expressed increased IL-12 and IFN-γ levels while IL-10 and TGF-ß levels remained unaffected. Likewise, similar trend of IFN-γ expression was noted in rEtPHP14 treated DC-T cell coculture, whereas IL-4 expression remained unchanged. These findings indicate that EtPHP14 is an important molecule that can upregulate host immune response, particularly Th1, during host-parasite interaction, suggesting its importance as a novel candidate for coccidiosis vaccine.


Assuntos
Citocinas , Eimeria tenella , Animais , Citocinas/análise , Galinhas/metabolismo , Células Dendríticas , Monoéster Fosfórico Hidrolases/metabolismo , Diferenciação Celular , Células Th1/química , Células Th1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA